4,157 research outputs found

    Potential-energy (BCS) to kinetic-energy (BEC)-driven pairing in the attractive Hubbard model

    Full text link
    The BCS-BEC crossover within the two-dimensional attractive Hubbard model is studied by using the Cellular Dynamical Mean-Field Theory both in the normal and superconducting ground states. Short-range spatial correlations incorporated in this theory remove the normal-state quasiparticle peak and the first-order transition found in the Dynamical Mean-Field Theory, rendering the normal state crossover smooth. For UU smaller than the bandwidth, pairing is driven by the potential energy, while in the opposite case it is driven by the kinetic energy, resembling a recent optical conductivity experiment in cuprates. Phase coherence leads to the appearance of a collective Bogoliubov mode in the density-density correlation function and to the sharpening of the spectral function.Comment: 5 pages, 4 figure

    Characteristics of oxygen isotope substitutions in the quasiparticle spectrum of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    There is an ongoing debate about the nature of the bosonic excitations responsible for the quasiparticle self energy in high temperature superconductors -- are they phonons or spin fluctuations? We present a careful analysis of the bosonic excitations as revealed by the `kink' feature at 70 meV in angle resolved photoemission data using Eliashberg theory for a d-wave superconductor. Starting from the assumption that nodal quasiparticles are not coupled to the (π,π)(\pi,\pi) magnetic resonance, the sharp structure at 7070 meV can be assigned to phonons. We find that not only can we account for the shifts of the kink energy seen on oxygen isotope substitution but also get a quantitative estimate of the fraction of the area under the electron-boson spectral density which is due to phonons. We conclude that for optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} phonons contribute ∼10\sim 10% and non-phononic excitations ∼90\sim 90%.Comment: 6 pages, 3 figure

    Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators

    Full text link
    Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to describe the Mott phase. Hence, as a step towards a quantitative theory of the competition between antiferromagnetism (AFM) and d-wave superconductivity (SC) in the cuprates, we use Cellular Dynamical Mean Field Theory to compute zero temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger than the bandwidth. The order parameter also assumes a dome shape as a function of doping while, by contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the presence of a finite second-neighbor hopping t', the zero temperature phase diagram displays the electron-hole asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in the cuprates. Adding realistic third-neighbor hopping t'' improves the overall agreement with the experimental phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs T_{c}/T_{c}^{max} phase diagram of the cuprates is universal. The calculated ARPES spectrum displays the observed electron-hole asymmetry. Our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise be considered anomalous from the point of view of the standard BCS approach.Comment: 13 pages, 7 figure

    Reading In English By Children In Korea: Frequency, Effectiveness, And Barriers

    Get PDF
    A study of the English non-textbook reading of fourth graders in Korea revealed that about 80% had done at least some reading, confirming that there is enthusiasm for English reading. About half, however, had read only five books or fewer. Non-readers said that the reason they did not read in English was the difficulty of English texts. Those who read more did better on a test of English spelling and vocabulary

    Short-range spin correlations and induced local spin-singlet amplitude in the Hubbard model

    Full text link
    In this paper, from the microscopic Hubbard Hamiltonian we extract the local spin-singlet amplitude due to short-range spin correlations, and quantify its strength near half-filling. As a first application of the present approach, we study a problem of the energy dispersion and its d-wave modulation in the insulating cuprates, Sr2_{2}CuO2_{2}Cl2_{2} and Ca2_{2}CuO2_{2}Cl2_{2}. Without any adjustable parameters, most puzzling issues are naturally and quantitatively explained within the present approach.Comment: 6 pages, 3 figure

    Verifying multi-partite mode entanglement of W states

    Get PDF
    We construct a method for verifying mode entanglement of N-mode W states. The ideal W state contains exactly one excitation symmetrically shared between N modes, but our method takes the existence of higher numbers of excitations into account, as well as the vacuum state and other deviations from the ideal state. Moreover, our method distinguishes between full N-party entanglement and states with M-party entanglement with M<N, including mixtures of the latter. We specialize to the case N=4 for illustrative purposes. In the optical case, where excitations are photons, our method can be implemented using linear optics.Comment: 11 pages, 12 figure

    On the optical conductivity of Electron-Doped Cuprates I: Mott Physics

    Full text link
    The doping and temperature dependent conductivity of electron-doped cuprates is analysed. The variation of kinetic energy with doping is shown to imply that the materials are approximately as strongly correlated as the hole-doped materials. The optical spectrum is fit to a quasiparticle scattering model; while the model fits the optical data well, gross inconsistencies with photoemission data are found, implying the presence of a large, strongly doping dependent Landau parameter

    First order Mott transition at zero temperature in two dimensions: Variational plaquette study

    Full text link
    The nature of the metal-insulator Mott transition at zero temperature has been discussed for a number of years. Whether it occurs through a quantum critical point or through a first order transition is expected to profoundly influence the nature of the finite temperature phase diagram. In this paper, we study the zero temperature Mott transition in the two-dimensional Hubbard model on the square lattice with the variational cluster approximation. This takes into account the influence of antiferromagnetic short-range correlations. By contrast to single-site dynamical mean-field theory, the transition turns out to be first order even at zero temperature.Comment: 6 pages, 5 figures, version 2 with additional results for 8 bath site

    J/psi hadron interaction in vacuum and in QGP

    Full text link
    Motivated by the recent lattice data that J/ψJ/\psi will survive up to 1.6TcT_c, we calculate the thermal width of J/ψJ/\psi at finite temperature in perturbative QCD. The inputs of the calculation are the parton quarkonium dissociation cross sections at the NLO in QCD, which were previously obtained by Song and Lee, and a gaussian charmonium wave function, whose size were fitted to an estimate by Wong by solving the schrodinger equation for charmonium in a potential extracted from the lattice at finite temperature. We find that the total thermal width above 1.4TcT_c becomes larger than 100 to 200 MeV, depending on the effective thermal masses of the quark and gluon, which we take it to vary from 600 to 400 MeV.Comment: 4 pages, Talk at Quark Matter 200
    • …
    corecore